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SUMMARY

The indirect boundary element method was used to study the hydrodynamics of oscillatory viscous
�ow over prolate and oblate spheroids, and over hemispheroidal bodies hinged to a plate. Analytic
techniques, such as spheroidal co-ordinates, method of images, and series representations, were used to
make the numerical methods more e�cient. A novel method for computing the hydrodynamic torque
was used, since for oscillatory �ow the torque cannot be computed directly from the weightings. Instead,
a Green’s function for torque was derived to compute the torque indirectly from the weightings. For
full spheroids, the method was checked by comparing the results to exact solutions at low and high
frequencies, and to results computed using the singularity method. For hemispheroids hinged to a plate,
the method for low frequencies was checked by comparing the results to previous results, and to exact
solutions at high frequencies. Copyright ? 2004 John Wiley & Sons, Ltd.
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1. INTRODUCTION

When the acceleration forces of a �uid dominate the non-linear inertial forces in unsteady
viscous �ow, the hydrodynamic equations can be linearized, and the analysis becomes much
more tractable. This linearization is valid for low-amplitude oscillatory behaviour such as �ow
produced by Brownian motion of microscopic particles and �ow produced by the swimming of
microscopic organisms. It is also valid for the hydrodynamics of hair bundles protruding from
the sensory epithelium of inner ear organs [1], which are the object of this research. There
have been previous studies of �ow over protuberances for Stokes �ow [2–4] and studies of
Stokes �ow for spheroidal shapes [5, 6], however these studies are not su�cient to understand
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hair bundle hydrodynamics since it has been shown that inertial forces can be important at
auditory frequencies [1].

2. BACKGROUND

The overall goal of this research is to understand the relationship between the morphology
of inner ear hair bundle structures and their functionality, in particular, how their size and
shape a�ect their responses to stimuli of di�erent frequencies. Hair bundles vary in shape
and size among di�erent hair cells; for instance, hair bundles of hair cells that control bal-
ance in vestibular organs that sense motion with frequencies less than one hertz, are taller
(40–120 �m) than hair bundles in hearing organs that sense sound of frequencies between 20
and 20 000 Hz (0.8–30 �m) [7].
Previously the hydrodynamics of a single hair bundle, modelled as a two-dimensional

�ap [8] and as a three-dimensional hemispheroid [4, 9–11] were investigated. The three-
dimensional hemispheroid model was analysed only in the limit of high and low frequencies.
The results of the 3-D model indicated that the sensitivity of the responses of hair cells at
low frequencies was mainly proportional to the cube of the heights of their hair bundles, and
at high frequencies, the sensitivity of the hair cells was mainly proportional to the inverse of
their heights. These results provide a reason for why hair bundle heights in vestibular organs
are one to two orders of magnitude taller than hair bundles in hearing organs [9]. Since the
2-D model of hair bundle hydrodynamics that was valid for all frequencies cannot model 3-D
e�ects, this study presents results for a 3-D model valid for all frequencies.
Professors D. Freeman and T. Weiss of M.I.T. have developed a general model that can

be used to analyse the hydrodynamics of hair bundles in the inner ear [8, 12–14]. Their aim
in developing this model was to make it as simple as possible by only including the features
of the hair cell structure important to its hydrodynamics.
The hair bundle is sti�, and so it is represented as a rigid body. Since the hair bundle

is compliantly attached to the epithelium surface, the attachment is represented as a spring-
loaded hinge, and the epithelium from which the hair bundle emerges is represented as a rigid
basal plate (Figure 1). The rigid body is immersed in an incompressible Newtonian �uid.
The hydrodynamics of the hair bundle motion is thought to play a key role in the frequency

tuning of hair cells in the free-standing region of the alligator lizard (Figure 2), whose basilar
papilla on which the hair cells lie has no tuning properties (unlike that of most other species),
and whose hair bundle heights vary along its length (like that of most other species). Since
the cross-section of its hair bundle is somewhat circular at its base, and since the e�ect of
shape on the hydrodynamics is of interest, the rigid body chosen to represent a hair bundle
is the hemispheroid, whose cross section is circular, and whose shape is mathematically easy
to represent and to change.
The motion of the rigid body can be understood as follows. The shearing component of

the motion of the basal plate rotates the body about the hinge.
This rotation is resisted by torques of �uid origin and by torques of mechanical origin that

arise in the rotational sti�ness of the hinged attachment.
The rigid body has two distinct modes of motion—translation and rotation. In translation,

the plate is translated and the hinge is �xed to the plate, while in rotation, the rigid body
is rotated about its hinge and the plate is stationary. For in�nitesimally small motions, a
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Figure 1. A prolate hemispheroid compliantly attached by a hinge to a plate. In response to the plate
translating, the hemispheroid both translates and rotates about the hinge.

Figure 2. A scanning electromicrograph of hair bundles found in the basilar papilla of the alligator
lizard. Hair bundles of three hair cells are shown in the foreground. Hair bundles are rigid and move

as a unit (although that is not obvious from the micrograph). Taken by Ruth Anne Eatock.

Copyright ? 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2004; 44:147–174



150 L. F. SHATZ

stationary boundary approximation can be used [15] and the equations of motion can be
linearized [1, 12], and so the torques due to translation of the basal plate, and rotation of the
hemispheroid can be determined separately and then superposed [12].
We represent the instantaneous angular displacement of the rigid body as �(t) which in the

sinusoidal steady state is represented as �(t)= �e−i!t where � is the complex amplitude of
the angular displacement and ! is the radian frequency of oscillation. Similarly, the complex
amplitude of the sinusoidal velocity of the basal plate is Upx̂. The goal of this analysis is to
determine the hair bundle sensitivity transfer function H�= �=Up which indicates how much
hair bundle de�ection, and hence, how much of a signal, is obtained for a given amplitude
of basilar membrane motion. H� depends on the hydrodynamic translational and rotational
torques as well as from the mechanical torques due to the compliant hinge and the inertia of
the hair bundle. Conservation of angular momentum requires that the sum of the mechanical
and hydrodynamic torques equals the change in angular momentum, which can be stated in
sinusoidal steady state as

−I!2�= −�
C
+HiUp +HpUp − i!�Zr (1)

where I represents the moment of inertia of the hemispheroid; C represents the compliance
of the hinge; HiUp represents a term to account for an accelerating reference frame; HpUp
represents the hydrodynamic torque due to translational motion; and −i!�Zr represents the
hydrodynamic torque due to rotational motion. Therefore, from Equation (1), H� = �=Up is
represented by

H�=
Hp +Hi

1=C − i!Zr +!2I (2)

Since the hydrodynamic and mechanical torques are functions of hair bundle size and shape
and frequency of oscillation, H� depends on these quantities.
In this study, the hydrodynamic torques were calculated using an indirect boundary element

method (BEM). Although a direct BEM can be used, where the weightings represent real
physical quantities, an indirect method is used because the Green’s functions are simpler, and
therefore more easily integrated.
To use the indirect method, a Green’s function was derived for the hydrodynamic torque

from the known Green’s functions for hydrodynamic pressure and velocity.
Curvilinear co-ordinate systems, prolate and oblate spheroidal co-ordinates [16, 17] were

used to discretize the domain. The use of curvilinear co-ordinates allowed for more e�cient
discretization because regions where the boundaries have high spatial frequencies have the
smallest grid spacings. It also allowed for more e�cient coding with one program describing
the full range of prolate hemispheroids and one program for the full range of oblate hemi-
spheroids. The azimuthal dependance of the weightings for spheroidal shapes has previously
been determined for Stokes �ow [4, 18], and the results are valid for linearized oscillatory
�ow too. Therefore, only a one-dimensional discretization was needed. To make the compu-
tations more e�cient, truncations of in�nite series representations were used when valid and
the integrations were performed analytically instead of numerically. The in�nite plate was
approximated with a �nite plate with a su�ciently large radius.
To check this method, the low frequency solutions were compared to the results of previous

studies [4] and the high frequency solutions were compared to exact solutions [11]. For further
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comparison, this method was also applied to full spheroids, where exact solutions exist for
low frequencies [5, 19] and high frequencies [5, 16, 20] and whose hydrodynamics have been
shown to be similar to that of hemispheroids protruding from plates [4].

3. PROBLEM FORMULATION

A hemispheroid compliantly hinged to a plate is shown in (Figure 1). Incompressible �ow is
assumed, and we set the velocity and pressure equal to U= u exp(−i!t), and P=p exp(−i!t).
Therefore, conservation of momentum and conservation of mass are described, respectively,
by [21]

−i!�u+ �(u · ∇)u= −∇P + �∇2u (3)

and

∇ · u=0 (4)

It has been shown that for physiologically relevant parameters, the �uid is incompressible and
that the convective non-linearity term, �(u · ∇)u, is four orders of magnitude less than the
�rst term, −i!�u [1], and therefore Equation (3) can be linearized,

−i!�u= −∇P + �∇2u (5)

We assume the plate translates in its plane with velocity Up = Up exp(−i!t)x̂. In response
to the plate translating, the hemispheroid translates and rotates in�nitesimally with angle
X= � exp(−i!t)X̂. The boundary condition far from the hemispheroid is the velocity due to a
plate translating with no hemispheroid present u=Up exp

(
−z
√
−i!�=�

)
x̂ [22].

The boundary conditions along the hemispheroid, plate, and at in�nity, are thus given respec-
tively by

u(r= r′) =Upx̂ − i!�(zx̂ − xẑ)
u(z=0)=Upx̂

u(r′ → ∞) =Up exp
(
−z
√
−i!�=�

)
x̂

(6)

where r′ denotes the surface of the hemispheroid. The torque on a hemispheroid is given by

T=
∫
S
r · dF (7)

where r represents a vector to a point on the surface S of the hemispheroid and,

dF= − PdS+ �(dS · ∇)u+ �∇(dS · u) (8)

where dS is in the normal direction to the surface. Due to the re�ection symmetry about the
x–z plane, the torque has only a y component.
The computations are best performed in a reference frame shifted by Up exp

(
−z
√
−i!�=�

)
x̂

so that the �uid is stationary at in�nity, allowing the use of Green’s functions which vanish
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at in�nity. For this frame of reference, the equations of motion remain the same while the
boundary conditions can be expressed as

u(r= r′) = Up(1− exp
(
−z
√
−i!�=�

)
)x̂ − i!�(zx̂ − xẑ)

u(z=0) = 0

u(r′ → ∞) = 0

The pressure term needs no modi�cation since the addition of Up exp
(
−z
√
−i!�=�

)
x̂ to the

velocity does not change Equation (5) because

−i!�Up exp
(
−z
√
−i!�=�

)
x̂ − �∇2(Up exp

(
−z
√
−i!�=�

)
x̂)=0

The torque however is changed by an amount found by substituting u=Up exp
(
−z
√
−i!�=�

)
x̂

into Equations (7) and (8). This shift in torque will be given in Section 6.
Since the equations of motion are linear, superposition can be used to separately solve

Equations (5) and (4) for the plate translating with no rotation (�=0), and for the hemi-
spheroid rotating with no plate motion (Up = 0). The boundary conditions for translational
motion can be written as

u(r= r′) = Up
(
1− exp

(
−z
√
−i!�=�

))
x̂

u(z=0) = 0

and for rotational motion, the boundary conditions are

u(r= r′) = −i!�(zx̂ − xẑ)

u(z=0) = 0

We will solve for the hydrodynamic quantities using spheroidal co-ordinates and an indirect
BEM method.

4. SPHEROIDAL CO-ORDINATES

We chose to use spheroidal co-ordinates where the hemispheroid and plate are co-ordinate
surfaces. Spheroidal co-ordinates, represented by �; �; �, are similar to spherical co-ordinates,
represented by r, � and �. As with a sphere, a cross-section of a spheroid parallel to the x–y
lane has the shape of a circle; however, a cross-section of a spheroid perpendicular to the
x–y plane has the shape of an ellipse.
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Figure 3. Left: A surface of constant r describes a sphere and a surface of constant � describes a
half-cone in spherical co-ordinates. Right: A surface of constant � describes a spheroid and a surface

of constant � describes a hyperboloid in spheroidal co-ordinates.

There are two types of spheroids—prolate and oblate. For prolate spheroids, the heights
of the cross-sectional ellipses are larger than the widths; for oblate spheroids, the converse
is true. Figure 3 illustrates the similarities and di�erences between spheroidal and spherical
co-ordinates. Prolate spheroidal co-ordinates are de�ned by

x= L sinh � sin � cos�

y= L sinh � sin � sin�

z= L cosh � cos �

(9)

Let �= �0 represent the surface of a spheroid. For a prolate spheroid, the half-height h and
half-width w are represented by h=L cosh �0, w=L sinh �0. Oblate spheroidal co-ordinates
can be obtained from Equation (9) by replacing cosh � with i sinh � and L with −iL.

5. HEMISPHEROID ON A PLATE

To describe a hemispheroid, we restrict � to range from zero to �=2. The tip of the hemi-
spheroid is at �=0; the base is at �=�=2. Figure 4 illustrates the hemispheroid on a plate
in rectangular co-ordinates and in spheroidal co-ordinates.

6. TORQUE IN FRAME OF REFERENCE FOR TRANSLATIONAL MOTION

The magnitude of the hydrodynamic torque due to translational motion of the plate can be
represented by

T =Tuc − Ts
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Figure 4. The hemispheroid on a plate is de�ned by a surface of constant � and the surface
�=�=2. The hemispheroid and plate in rectangular co-ordinates (left panel) transform to

orthogonal planes in spheroidal co-ordinates.

where Tuc is the torque that will be computed numerically, and Ts is the shift in torque due
to change of reference frame. Ts can be found by integrating Equation (7) on the surface of
the hemispheroid, with u=Up exp

(
−z
√
−i!�=�

)
x̂. Let �=

√
−i!�=�h. The portion of the

torque due to the reference frame shift is

Ts = �
w2

�2
(2 + �2 − 2e−�(1 + �+ �2)) (10)

We consider hemispheroids of the same height. Since Ts is proportional to w2, the shift in
torque due do a change in reference frame is more signi�cant for oblate shapes than prolate
shapes.

7. BOUNDARY ELEMENT METHODS

The BEM is a numerical approximation of the boundary integral or singularity method (BIM),
which represents the solutions to a homogeneous linear di�erential equation with speci�ed
boundary conditions as a weighted integral of Green’s functions,

ui(�; r) =
∫
s′
(wx(�; �′; �′)Guxi(�; r− r′) + wy(�; �′; �′)Guyi(�; r− r′)

+wz(�; �′; �′)Guzi(�; r− r′)) dS ′ (11)

where ui(r) represents the ith component of �uid velocity, wj(�; �′; �′) represents the weighting
of the jth component of a velocity stokeslet, and Guji(�; r− r′) represents the jth component
of a velocity stokeslet due to an impulse in the ith direction.
For Stokes �ow, both the force and torque can be computed directly form the weightings of

the Green’s functions. For linearized oscillatory �ow, the force can still be found directly from
the weightings [6] although the torque cannot. However, we can compute the torque from the
weightings by using a Green’s function for torque, which will be derived in a subsequent
section.
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7.1. Green’s functions for linearized oscillating �ow

In the manner of [6], let us write Equation (5) with non-dimensional variables,

�2u= −∇P +∇2u

Equation (4) is still satis�ed with non-dimensional variables. The simplest Green’s functions
of Equations (5) and (4) are known as oscillating stokeslets [6]. Gui(�; r) the ith component
of the velocity stokeslet due to a three dimensional impulse at the origin can be expressed as

Gui(�; r) =
1
8��

(
A
x̂i
r
+ B

x2i x̂i + xixjx̂j + xixk x̂k
r3

)

where

A=2e−�r
(
1 +

1
�r
+

1
(�r)2

)
− 2
(�r)2

B=−2e−�r
(
1 +

3
�r
+

3
(�r)2

)
+

6
(�r)2

The pressure oscillating stokeslet is the same as the stokeslet for Stokes �ow and can be
expressed as

Gpi(r)=
1
4�
xix̂i
r3

The stokeslets for impulses not on the origin can be expressed by substituting r−r′ for r. Note
that although the stokeslet is singular at r= r′, the singularity in integrable, and numerical
integration can be performed.

7.2. �′ dependency of the stokeslet weightings

The �′ dependency of the stokeslet weightings have been previously derived for Stokes �ow
[4], and the analysis is equally valid for oscillating �ow. We therefore represent the stokeslets
weightings as

wx(�; �′; �′) =w′
x(�; �

′) + w′
xy(�; �

′) cos2 �′

wy(�; �′; �′) =w′
xy(�; �

′) sin�′ cos�′

wz(�; �′; �′) =w′
z(�; �

′) cos�′

where the w′
i(�; �

′)’s are to be determined numerically.

7.3. Analytic integration of �′ dependence

The stokeslet weightings can be integrated analytically with respect to �′ by expressing the
stokelets with their weightings in spheroidal co-ordinates. The result is an in�nite series, which
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converges after the �rst three terms when � is not too large, and the collocation point is not
near the stokeslet. The analytic integration is discussed in more detail in Appendix A. The
integrated stokeslet was used when the ratio of the third term to the second term of the series
was less than 0.001.

7.4. Use of image stokeslet

For full spheroids an image stokeslet can be used because of the symmetry about the x–y
plane. The image stokeslets are negative stokeslets in x̂ and ŷ and positive in ẑ for the case
of rotational motion. For hemispheroids on a plate, the numerical analysis was made more
rapidly convergent with the use of a negative image stokeslet in each direction. Since the
boundary conditions along the plate cannot be fully satis�ed with the use of image stokeslets,
it was also necessary to put stokeslets along the plate.

7.5. Numerical method to compute the �′ dependence of weights

An arc at �=�=4 was discretized into n sections from �=0 to � for a full spheroid and
�=�=2 for a hemispheroid, with each section having the same range of �=2n, and the weights
represented as constant in each section (Figure 5). For the full spheroid, only the boundary
conditions along the arc were used to determine the weightings. For the hemispheroid on a
plate, a line segment along the plate was discretized to �= �ab with n=2 sections. �ab, the
limit of the arti�cial boundary, was chosen large enough such that increasing its value has no
signi�cant e�ect on the results. A collocation point was chosen as the midpoint of each section.
For full spheroids, since there are three weightings for each section, and three components
of boundary velocities, there are 3n boundary equations for 3n unknown weightings. For
hemispheroids on plates, there are 3n + 3n=2 boundary equations for 3n + 3n=2 unknown
weightings.
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Arc of the hemispheroid, �=�/4
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o

1 2 3
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Figure 5. The discretation arc for a hemispheroid. A circular plate extends out to �= �ab,
the arti�cial boundary. Here there are n=6 sections, and the collocation point is chosen

as the midpoint of each section.
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We can therefore represent Equation (11) for full spheroids as

ui(�; r) =
∑
k

∫
�′ ; k
[w′
xk(�; �

′)(G′
uxi0k(�; �

′; r)−G′
uxi0k(�; �− �′; r))

+w′
xyk(�; �

′)(G′
uxi2k(�; r; �

′)−G′
uxi2k(�; r; �− �′) +G′

uyik(�; r; �
′)−G′

uyik(�; r; �− �′))

+w′
zk(�; �

′)(G′
uzik(�; r; �

′) +G′
uzik(�; r; �− �′))]

where G′
ujik(�; r; �

′) represents the stokeslet after integrating over �′. For hemispheroids on
plates Equation (11) is represented as

ui(�; r) =
∑
k

∫
�′ ; k
[w′
xk(�; �

′)(G′
uxi0k(�; �

′; r)−G′
uxi0k(�; �− �′; r))

+w′
xyk(�; �

′)(G′
uxi2k(�; r; �

′)−G′
uxi2k(�; r; �− �′) +G′

uyik(�; r; �
′)−G′

uyik(�; r; �− �′))

+w′
zk(�; �

′)(G′
uzik(�; r; �

′)−G′
uzik(�; r; �− �′))]

+
∑
l

∫
�′ ; l
w′
xl(�; �

′)G′
uxi0l(�; �

′; r) + w′
xyl(�; �

′)(G′
uxi2l(�; r; �

′)

+G′
uyil(�; r; �

′)) + w′
zl(�; �

′)G′
uzil(�; r; �

′)

The analysis was performed using Mathematica [23].

7.6. Derivation of torque stokeslet

Once the weightings have been determined, the torque can be found using torque stokeslets.
The torque stokeslet can be derived from the velocity and pressure stokeslets by substituting
u=Gui(r) and P=Gpi(r) into Equations (7) and (8). The result can be integrated analytically
with respect to �, although numerical integration is necessary for the other directions. For
full spheroids, the torque can be expressed as

T (�; r) =
∑
k

∫
S

∫
�′ ; k
[w′
xk(�; �

′)(T ′
uxi0k(�; �

′; r)− T ′
uxi0k(�; �− �′; r))

+w′
xyk(�; �

′)(T ′
uxi2k(�; r; �

′)− T ′
uxi2k(�; r; �− �′) + T ′

uyik(�; r; �
′)− T ′

uyik(�; r; �− �′))

+w′
zk(�; �

′)(T ′
uzik(�; r; �

′) + T ′
uzik(�; r; �− �′))]

where T ′
ujik(�; r; �

′) represents the integrated torque stokeslet with respect to �′. Appendix B
contains the integrated torque stokeslets. For hemispheroids on plates, additional terms are
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required to account for the stokeslets on the plate,

T (�; r) =
∑
k

∫
S

∫
�′ ; k
[w′
xk(�; �

′)(T ′
uxi0k(�; �

′; r)− T ′
uxi0k(�; �− �′; r))

+w′
xyk(�; �

′)(T ′
uxi2k(�; r; �

′)− T ′
uxi2k(�; r; �− �′) + T ′

uyik(�; r; �
′)− T ′

uyik(�; r; �− �′))

+w′
zk(�; �

′)(T ′
uzik(�; r; �

′)− T ′
uzik(�; r; �− �′))]

+
∑
l

∫
S

∫
�′ ; l
[w′
xl(�; �

′)T ′
uxi0l(�; �

′; r)

+w′
xyl(�; �

′)(T ′
uxi2l(�; r; �

′) + T ′
uyil(�; r; �

′)) + w′
zl(�; �

′)T ′
uzil(�; r; �

′)]

7.7. Simpli�cations at low and high frequencies

At low frequencies as �−¿0, the simpler Stokes �ow equations can be used to represent the
hydrodynamics [4], and at high frequencies, as �−¿∞, Laplace’s equation can be used [11].
Exact solutions at low and high frequencies for full spheroids have been derived [4, 5, 20], and
at high frequencies for hemispheroids on plates [11, 16]. There have been previous numerical
results for hemispheroids on plates for Stokes �ow [4, 18]. All these previous results will be
used as a check on the solutions.

8. RESULTS FOR FULL SPHEROIDS

Excellent results were obtained for full spheroids undergoing rotational motion. Figure 6
illustrates the BEM results for torque as a function of � as well as the results obtained using
the singularity method [24]. Slight di�erences are attributed to numerical errors. The results
match exact solutions for small �, and approach exact solutions for high � for the full range
of shapes. The results are shown for the highest � that gave a good match to the boundary
velocities o� the collocation points.

9. RESULTS FOR HEMISPHEROIDS ON PLATES

Very good results have been obtained for hemispheroids on plates for prolate shapes, and
good results have been obtained for oblate shapes.

9.1. Low frequency solution

Figure 7 illustrates the results for low frequencies for the full range of shapes for rotational
motion and translational motion. Also shown are the results of other studies [4, 18]. There is
a noticeable di�erence in the results for oblate hemispheroids. Figure 8 illustrates the error
in boundary conditions o� the collocation points along the curve �=�=4 for a thin prolate
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Figure 7. The low frequency torques for the full range of shapes for rotational (normalized by −i!�)
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spheroids, as �0−¿0, the width approaches in�nity and so the torque approaches in�nity. Results of
other studies [18, 4] are also shown. The di�erences in the results for prolate hemispheroids are small.

Larger di�erences are evident for wider hemispheroids.

hemispheroid and a wide oblate hemispheroid for n=12. It is clear that for oblate shapes,
the boundary conditions were di�cult to represent along the plate and therefore some error is
expected in the results. While the errors along the boundaries were smaller for n=12, than
for n=8, increasing n to 16 or 20 did not signi�cantly change the results. To more accurately
represent the torque of oblate hemispheroids, a linear �t of the torque as a function of 1=n
for n=8 and 12 was made, and used to extrapolate the results. Thus we �t Tuc = torque0 +
torque1 ∗ 1=n, and the constant term, torque0, was used to estimate the torque.

Copyright ? 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2004; 44:147–174



160 L. F. SHATZ

.05

.10

.15

Error in |velocity| along boundary
Translational Motion

Error in |velocity| along boundary
Rotational Motion

along hemispheroid along plate

 �ο=.2

along plate

, h/w=1/5oblate,
 �ο=.2 , h/w=5prolate,

2

�=�/4

4

Low Frequency Solution

along hemispheroid

tip base tip base}
Figure 8. The error in boundary velocities for a thin prolate hemispheroid and a wide oblate hemi-
spheroid for rotational normalized by −i!� (left) and translational motion normalized by Up� (right).

The error along the plate is pronounced for the wide oblate hemispheroid.

-2 -1  0  1

 1

 2

 2

 3

 3

 4
Log10 ( Normalized torque)

Log10 |λ|

�  =.2ο

�  =.549ο

�  =.549ο

�  =.2ο

half sphere

ob
la

te
pr

ol
at

e

{
{

Rotational motion

h/w=1/5

h/w=1/2

h/w=2

h/w=5

Figure 9. The magnitude of the torque normalized by −i!� for hemispheroids of the same
height on plates for shapes ranging from thin, pencil-like to �at, disk-like for rotational mo-
tion. The dotted lines represent exact solutions for high frequencies. The high frequency torque

for a half sphere on a plate is zero.

9.2. Rotational motion

The magnitude and phase for rotational motion for hemispheroids on plates whose shape
ranges from thin pencil-like shapes to �at disks are shown in Figures 9 and 10 respectively.
The results are similar to those of the full spheroid in rotational motion (Figure 6), although
the range in � is not as high for the oblate shapes because of the greater di�culty in matching
the boundary conditions along the plate. Figure 11 illustrates the two cases on the same graph.
For thin, prolate shapes, the torque for a hemispheroid on a plate is half that of a full spheroid,
which is what is expected if the e�ect of the plate is not signi�cant. As the shape gets wider,
the torque for a hemispheroid on a plate becomes more than half that of a full spheroid. This
result makes sense since the plate restricts the �ow of the �uid around the hemispheroid,
and therefore, the torque on the hemispheroid is greater where the e�ects of the plate are
greater, i.e., for oblate hemispheroids. This result seems to be true throughout the frequency
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by a factor of 2. For wider shapes, the factor is a little more than 1. (A ratio of height to half-width

of h=w=5 or 1=5 corresponds to �0 = 0:2 and h=w=2 or 1=2 corresponds to �0 = 0:549.)

range and Figure 12 illustrates the ratio of the torque of the full spheroid to the torque of the
hemispheroid on a plate at high frequencies, for which there are exact solutions [11].

9.3. Translational motion

The magnitude (Figure 13) and phase (Figure 14) for Tuc for the full range of shapes are
similar to the results of rotational motion at high frequencies, but are not constant with respect
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goes to zero so therefore it is not shown. (A ratio of height to half-width of h=w=5 or 1=5 corresponds
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to � at low frequencies since the boundary velocity along the hemispheroid varies with �,

u(r = r′) = Up
(
1− exp

(
−z
√
−i!�=�

))
x̂ = Up(1− exp(−z�=h))≈Upz�=h

The results approach the high frequency exact results for large �.
The magnitude and phase for Ts for the full range of shapes are shown in Figure 15 and

are plotted with the results for Tuc in Figure 16. For prolate hemispheroids, Tuc is signi�cantly
larger than Ts for all frequencies, so that the torque T ≈Tuc. For oblate hemispheroids Ts¿Tuc
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for low frequencies, and for hemispheres Ts≈Tuc for low frequencies, so both terms must be
used to represent the torque. Figures 17 and 18 illustrate the torque with both terms included.

10. COMPARING THE MODEL’S PREDICTIONS FOR THE HAIR BUNDLE
SENSITIVITY TRANSFER FUNCTION H� TO MEASUREMENTS

OF H� IN THE ALLIGATOR LIZARD

The results for the rotational torque Tr and the translational torque Tt were used to deter-
mine H� (Equation (2)) with Hp =Tt=Up, and Zr =Tr= − I!�. The e�ect of mass was found
to be small and therefore the hair bundle’s inertia I and the term that accounts for an ac-
celerating reference frame Hi, were set to zero. Figure 19 illustrates the model’s predictions
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and compares them with measurements taken from the basilar papilla of the alligator lizard
[24]. The compliance was chosen to have a physiologically relevant value of 75 rad/N-pm
(although the results matched the measurements for a wide range of compliances, all within
the physiologically relevant range). An excellent match with the measurements is obtained for
the prolate hemispheroid with h=w=2 which makes sense considering the shapes of the hair
bundles shown in Figure 2 and described in Reference [25]. A very good match is obtained
for the prolate hemispheroid with h=w=5. The more oblate the hemispheroid, the worse is
the match. Therefore we can conclude that hydrodynamics does play a role in hair bundle
motion.
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Figure 19. The hair bundle sensitivity transfer function for C=75 rad/N-pm compared with measure-
ments taken from the hair bundles of the basilar papilla of the alligator lizard. The model’s predictions

match the data for prolate hemispheroids, but not for oblate hemispheroids.

Copyright ? 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2004; 44:147–174



166 L. F. SHATZ

11. CONCLUSION

The hydrodynamic torque for prolate and oblate spheroids in in�nitesimal, rotational oscilla-
tory motion, and the hydrodynamic torques for prolate and oblate hemispheroids compliantly
hinged to plates, that oscillate in�nitesimally, have been computed for all frequencies using the
indirect boundary element method with analytic techniques such as spheroidal co-ordinates,
method of images, and series representations. A Green’s function for torque was derived which
was used with the stokeslet weightings to obtain the torques. For full spheroids, the results
match exact solutions at low and high frequencies, and match the results of a singularity
method. For hemispheroids on plates, the results match previous results at low frequencies,
and approach the exact high frequency results. An excellent match is obtained for the model’s
predictions of the hair bundle sensitivity transfer function, and measurements of the function
taken from the basilar papilla of the alligator lizard for a hair bundle represented by a hemi-
spheroid with physiologically relevant shape.

APPENDIX A: ANALYTIC INTEGRATION OF THE OSCILLATING STOKESLETS

To perform the analytic integration of the weighted stokeslets in the �̂ direction, we represent
|r−r′| as |r−r′| = a−b cos�′′, where a and b are functions of L, �; �′, �; �′, and �′′=�−�′.
The terms of the oscillating stokeslets that are not easily integrable with respect to �′′ are

of the form ∫ 2�

0
(k1 sin

r �′′ + k2 cosm �′′)
e−�

√
a−b cos�′′√

a− b cos�′′n
d�′′

where m, n and r are integers, with r odd. For the k1 sin
r �′′ terms, the integral is 0 so that

the terms are of the form ∫ 2�

0
k2 cosm �′′ e

−�
√
a−b cos�′′√

a− b cos�′′n
d�′′ (A.1)

Let us �rst �nd the solution of Equation (1) for n=1. For n¿1, we can �nd the result by
taking an integral of the solution for n=1 with respect to −�. For instance we can obtain
the solution for n=2,

∫ 2�

0
k2 cosm �′′ e

−�
√
a−b cos�′′√

a− b cos�′′2
d�′′ (A.2)

by taking the integral of the solution for Equation (1) with respect to −� since Equation (2)
is equal to the integral of Equation (1) with respect to −�,

∫ 2�

0
k2 cosm �′′ e

−�
√
a−b cos�′′√

a− b cos�′′2
d�′′=

∫
d(−�)

∫ 2�

0
k2 cosm �′′ e

−�
√
a−b cos�′′√

a− b cos�′′ d�
′′

The integrals for other values of n can be found in a similar manner.
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Let us represent
√
a− b cos�′′n in terms of a binomial function [26],

√
a− b cos�′′n = an=2

n=2∑
k=0

(
−n
2

)
k

(
b

a cos�′′

)k 1
k!

for n even

= an=2
∞∑
k=0

(
−n
2

)
k

(
b

a cos�′′

)k 1
k!

for n odd

and let us represent the exponential in terms of its power series
(
e−x =

∑∞
j=0 (−x)j=j!

)
, and

split the series to its even and odd functions,

e−x=
∞∑
l=0

(−x)2l
(2l)!

+
∞∑
l=0

(−x)2l+1
(2l+ 1)!

We can therefore write Equation (1) as

∫ 2�

0
d�′′ cosm �p

e−�
√
a−b cos�′′√

a− b cos�′′ =
∫ 2�

0
d�′′

(
∞∑
l=0

(−�)2l
(2l)!

√
a
2l−1 ∞∑

k=0

(−2l+ 1
2

)
k

(
b
a

)k

×
(

1
cos�′′

)k−m 1
k!
+

∞∑
l=0

(−�)2l+1
(2l+ 1)!

√
a
2l l∑
k=0

(−2l
2

)
k

×
(
b
a

)k ( 1
cos�′′

)k−m 1
k!

)
(A.3)

Using known Pochhammer identities, and recognizing modi�ed Bessel Functions of the �rst
kind In(z) [26], we can write Equation (3) as

∫ 2�

0
d�p cosm �′′ e

−�
√
a−b cos�′′√

a− b cos�′′ =
∫ 2�

0
d�′′ ∞∑

k=0;even

(
b
a

)k (cos�′′)
k!

k−m

×
((

1
2

)
k

1√
a
(−�√a)k+1=2 �(1

2
− k
)
I−k−1=2

(−�√a))

− �(−1)k
(−�√a

2

)k−1=2
�
(
3
2

)
Ik+1=2

(−�√a)

Since [27],
∫ 2�

0
(cos�p)r =4 · 2r−1B(r + 1=2; r + 1=2)
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the integral can be expressed as

∫ 2�

0
d�p cosm �′′ e

−�
√
a−b cos�′′√

a− b cos�′′ =
∞∑

k=0;even
4 · 2k−m−1B(k −m+ 1=2; k −m+ 1=2) 1

k!

×
((

1
2

)
k

1√
a
(−�√a)k+1=2 �(1

2
− k
)
I−k−1=2

(−�√a))

− �(−1)k
(−�√a

2

)k−1=2
�
(
3
2

)
Ik+1=2

(−�√a)

APPENDIX B: THE INTEGRATED TORQUE STOKESLET T′

The torque stokeslet T ′
uxi0 due to impulses in the x direction which are constant with respect

to ’′; the two torque stokeslets which have the same weighting, T ′
uxi2 due to impulses in the

x direction which vary as cos2 ’′ and T ′
uyi due to impulses in the y direction which vary as

cos’′ sin’′; and the torque stokeslets T ′
uzi due to impulses in the z direction which vary as

cos’′, are given in the following expressions:

Tuxi0

= (−(2��(−24c3de + 6cd3e + 6c4f − 24c2d2f − c6f�2 − 2c4d2f�2 − c2d4f�2 − 9cdec20

+ 12c2fc20 − 6c4f�2c20 − 4c2d2f�2c20 + c3f�2 cos[3�′]c30 − 3c2f�2c40 + 6c3edz − 24cd2edz

+18c2dfdz − 12d3fdz + c5e�2dz + 2c3d2e�2dz + cd4e�2dz + 12cec20dz + 18dfc20dz

+6c3e�2c20dz + 4cd
2e�2c20dz − c2e�2 cos[3�′]c30dz + 3ce�

2c40dz − c cos[2�′]c20(15de − 6cf

+4c3f�2 + 2cd2f�2 + 2cf�2c20 − 6edz − 4c2e�2dz − 2d2e�2dz − 2e�2c20dz)

+ cos[�′]c0(5c5f�2 + 3c3f(−6 + 2d2�2 + 3�2c20)− 5c4e�2dz − e(−24d2 + d4�2 + 6c20
+ 2d2�2c20 + �

2c40)dz + cf(24d
2 + d4�2 − 6c20 + 2d2�2c20 + �2c40 − 36ddz)− 3c2e(−16d

+6dz + 2d2�2dz + 3�2c20dz))))=(�
2(a− b cos[�′])7=2) + (2e−�

√
a−b cos[�′]��(−24c3de + 6cd3e

+6c4f − 24c2d2f − 9c5de�2 − 6c3d3e�2 + 3cd5e�2 + 2c6f�2 − 8c4d2f�2 − 10c2d4f�2

− 24c3de�
√
a− b cos[�′] + 6cd3e�

√
a− b cos[�′] + 6c4f�

√
a− b cos[�′]− 24c2d2f�

×
√
a− b cos[�′]− c5de�3

√
a− b cos[�′] + cd5e�3

√
a− b cos[�′]− 2c4d2f�3

√
a− b cos[�′]

− 2c2d4f�3
√
a− b cos[�′]− 9cdec20 + 12c2fc20 − 30c3de�2c20 + 12c4f�2c20 − 16c2d2f�2c20

− 9cde�
√
a− b cos[�′]c20 + 12c

2f�
√
a− b cos[�′]c20 − 3c3de�3

√
a− b cos[�′]c20 + cd

3e�3

×
√
a− b cos[�′]c20 − 4c2d2f�3

√
a− b cos[�′]c20 + 6c

2de�2 cos[3�′]c30 − 2c3f�2 cos[3�′]c30
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+ c2de�3
√
a− b cos[�′] cos[3�′]c30 − 3cde�2c40 + 6c2f�2c40 + 6c3edz − 24cd2edz + 18c2dfdz

− 12d3fdz + c5e�2dz − 10c3d2e�2dz − 11cd4e�2dz + 6c4df�2dz − 6d5f�2dz + 6c3e�

×
√
a− b cos[�′]dz − 24cd2e�

√
a− b cos[�′]dz + 18c2df�

√
a− b cos[�′]dz − 12d3f�

×
√
a− b cos[�′]dz − c5e�3

√
a− b cos[�′]dz − 4c3d2e�3

√
a− b cos[�′]dz − 3cd4e�3

×
√
a− b cos[�′]dz − 2c2d3f�3

√
a− b cos[�′]dz − 2d5f�3

√
a− b cos[�′]dz + 12cec20dz

+18dfc20dz + 6c
3e�2c20dz − 20cd2e�2c20dz + 24c2df�2c20dz + 12ce�

√
a− b cos[�′]c20dz

+18df�
√
a− b cos[�′]c20dz − 6c3e�3

√
a− b cos[�′]c20dz − 8cd2e�3

√
a− b cos[�′]c20dz

− 2d3f�3
√
a− b cos[�′]c20dz − c2e�2 cos[3�′]c30dz + c

2e�3
√
a− b cos[�′] cos[3�′]c30dz

+3ce�2c40dz + 6df�
2c40dz − 3ce�3

√
a− b cos[�′]c40dz + c cos[2�

′]c20(−15de + 6cf

− 24c2de�2 − 6d3e�2 + 8c3f�2 − 8cd2f�2 − 15de�
√
a− b cos[�′] + 6cf�

√
a− b cos[�′]

− 3c2de�3
√
a− b cos[�′]− d3e�3

√
a− b cos[�′]− 2cd2f�3

√
a− b cos[�′]− 6de�2c20

+ 4cf�2c20 − de�3
√
a− b cos[�′]c20 + 6edz + 4c

2e�2dz − 10d2e�2dz + 12cdf�2dz + 6e�

×
√
a− b cos[�′]dz − 4c2e�3

√
a− b cos[�′]dz − 4d2e�3

√
a− b cos[�′]dz + 2e�2c20dz − 2e�3

×
√
a− b cos[�′]c20dz)− cos[�′]c0(10c5f�2 − e(24d2 + 11d4�2 + 24d2�

√
a− b cos[�′]

+ 3d4�3
√
a− b cos[�′]− 6c20 + 10d2�2c20 − 6�

√
a− b cos[�′]c20 + 4d

2�3
√
a− b cos[�′]

c20 − �2c40 + �3
√
a− b cos[�′]c40)dz − 6c3f(−3 + 4d2�2 − 3�

√
a− b cos[�′] + d2�3

×
√
a− b cos[�′]− 3�2c20 − 4d�2dz)− c4e�2(36d+ 4d�

√
a− b cos[�′]− 5dz + 5�

×
√
a− b cos[�′]dz) + 2cf(−12d2 − 5d4�2 − 12d2�

√
a− b cos[�′]− d4�3

√
a− b cos[�′]

+ 3c20 − 4d2�2c20 + 3�
√
a− b cos[�′]c20 − d2�3

√
a− b cos[�′]c20 + �

2c40 + 18ddz + 18d�

×
√
a− b cos[�′]dz − 2d3�3

√
a− b cos[�′]dz + 12d�2c20dz)− 3c2e(16d+ 4d3�2 + 16d�

×
√
a− b cos[�′] + 10d�2c20 + d�

3
√
a− b cos[�′]c20 − 6dz + 10d2�2dz − 6�

√
a− b cos[�′]dz

+4d2�3
√
a− b cos[�′]dz − 3�2c20dz + 3�3

√
a− b cos[�′]c20dz))))=(�

2(a− b cos[�′])7=2)

× h1h2h′1h′2

Tuxi2 + Tuyi

=
1

�2(a− b cos[�′])7=2
(ce−�

√
a−b cos[�′]�(cos[�′]2(12ade − 60c2de − 12adee�

√
a−b cos[�′]

+ 60c2dee�
√
a−b cos[�′] + 12acf − 60cd2f − 12ace�

√
a−b cos[�′]f + 60cd2e�

√
a−b cos[�′]f
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+6a2de�2 + 3b2de�2−24ac2de�2+4a2cf�2+2b2cf�2 − 24acd2f�2+2a2ce�
√
a−b cos[�′]f�2

+b2ce�
√
a−b cos[�′]f�2 + 12ade�

√
a− b cos[�′]− 60c2de�

√
a− b cos[�′] + 12acf�

×
√
a− b cos[�′]− 60cd2f�

√
a− b cos[�′] + 2a2de�3

√
a− b cos[�′] + b2de�3

√
a− b cos[�′]

− 4ac2de�3
√
a− b cos[�′]− 4acd2f�3

√
a− b cos[�′] + 4b cos[�′](cd2f�2(6 + �

×
√
a− b cos[�′])− cf(3 + 2a�2 + e�

√
a−b cos[�′](−3 + a�2) + 3�

√
a− b cos[�′]) + de(−3

+3e�
√
a−b cos[�′] + 6c2�2 − 3�

√
a− b cos[�′] + c2�3

√
a− b cos[�′]− a�2(3 + �

×
√
a− b cos[�′]))) + b2�2(c(2 + e�

√
a−b cos[�′])f + de(3 + �

√
a− b cos[�′])) cos[2�′])

− cos[�′](−90cde + 90cdee�
√
a−b cos[�′] + 12af − 60d2f − 12ae�

√
a−b cos[�′]f

+60d2e�
√
a−b cos[�′]f − 36acde�2 + 4a2f�2 + 2b2f�2 − 24ad2f�2 + 2a2e�

√
a−b cos[�′]f�2

+ b2e�
√
a−b cos[�′]f�2 − 90cde�

√
a− b cos[�′] + 12af�

√
a− b cos[�′]− 60d2f�

×
√
a− b cos[�′]− 6acde�3

√
a− b cos[�′]− 4ad2f�3

√
a− b cos[�′]− b cos[�′](−7cde�2(6

+ �
√
a− b cos[�′]) + 4f(3 + 2a�2 − 6d2�2 + e�

√
a−b cos[�′](−3 + a�2) + 3�

×
√
a− b cos[�′]− d2�3

√
a− b cos[�′])) + (b2(2 + e�

√
a−b cos[�′])f�2 + 2cde(15e�

√
a−b cos[�′]

−15(1 + �
√
a− b cos[�′])− a�2(6 + �

√
a− b cos[�′]))) cos[2�′] + 6bcde�2 cos[3�′]

+ bcde�3
√
a− b cos[�′] cos[3�′])c0 + 4de cos[�′]2(−15 + 15e�

√
a−b cos[�′] − 6a�2 − 15�

×
√
a− b cos[�′]− a�3

√
a− b cos[�′] + b�2 cos[�′](6 + �

√
a− b cos[�′]))c20 − a2e

× e�
√
a−b cos[�′]�2dz)h1h2h′1h

′
2)

− 1
4�2(a− b cos[�′])7=2

(e−�
√
a−b cos[�′]�(96ace − 120c3e − 96acee�

√
a−b cos[�′]

+ 120c3ee�
√
a−b cos[�′] + 48adf − 120c2df − 48ade�

√
a−b cos[�′]f + 120c2de�

√
a−b cos[�′]f

+44a2ce�2 + 27b2ce�2 − 48ac3e�2 + 3b2cee�
√
a−b cos[�′]�2 + 24a2df�2 + 12b2df�2

− 48ac2df�2 + 96ace�
√
a− b cos[�′]− 120c3e�

√
a− b cos[�′] + 48adf�

√
a− b cos[�′]

− 120c2df�
√
a− b cos[�′] + 12a2ce�3

√
a− b cos[�′] + 7b2ce�3

√
a− b cos[�′]− 8ac3e�3

×
√
a− b cos[�′] + 8a2df�3

√
a− b cos[�′] + 4b2df�3

√
a− b cos[�′]− 8ac2df�3

×
√
a− b cos[�′] + 4b cos[�′](3c3e�2(6 + �

√
a− b cos[�′]) + 3c2df�2(6 + �

√
a− b cos[�′])

+ 4df(3e�
√
a−b cos[�′] − 3(1 + �

√
a− b cos[�′])− a�2(3 + �

√
a− b cos[�′]))

− ce(3e�
√
a−b cos[�′](−10 + a�2) + 30(1 + �

√
a− b cos[�′]) + a�2(27 + 7�

√
a− b cos[�′])))
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+48ace cos[2�′]− 120c3e cos[2�′]− 48acee�
√
a−b cos[�′] cos[2�′] + 120c3ee�

√
a−b cos[�′]

× cos[2�′]− 120c2df cos[2�′] + 120c2de�
√
a−b cos[�′]f cos[2�′] + 20a2ce�2 cos[2�′]

+ 32b2ce�2 cos[2�′]− 48ac3e�2 cos[2�′] + 4a2cee�
√
a−b cos[�′]�2 cos[2�′] + 4b2ce

× e�
√
a−b cos[�′]�2 cos[2�′] + 12b2df�2 cos[2�′]− 48ac2df�2 cos[2�′] + 48ace�

√
a− b cos[�′]

× cos[2�′]− 120c3e�
√
a− b cos[�′] cos[2�′]− 120c2df�

√
a− b cos[�′] cos[2�′] + 4a2ce�3

×
√
a− b cos[�′] cos[2�′] + 8b2ce�3

√
a− b cos[�′] cos[2�′]− 8ac3e�3

√
a− b cos[�′] cos[2�′]

+ 4b2df�3
√
a− b cos[�′] cos[2�′]− 8ac2df�3

√
a− b cos[�′] cos[2�′]− 24bce cos[3�′]

+ 24bcee�
√
a−b cos[�′] cos[3�′]− 20abce�2 cos[3�′] + 24bc3e�2 cos[3�′]− 4abcee�

√
a−b cos[�′]

× �2 cos[3�′] + 24bc2df�2 cos[3�′]− 24bce�
√
a− b cos[�′] cos[3�′]− 4abce�3

√
a− b cos[�′]

× cos[3�′] + 4bc3e�3
√
a− b cos[�′] cos[3�′] + 4bc2df�3

√
a− b cos[�′] cos[3�′] + 5b2ce�2

× cos[4�′] + b2cee�
√
a−b cos[�′]�2 cos[4�′] + b2ce�3

√
a− b cos[�′] cos[4�′]− 4 cos[�′](36ae

− 150c2e − 36aee�
√
a−b cos[�′] + 150c2ee�

√
a−b cos[�′] − 120cdf + 120cde�

√
a−b cos[�′]f

+16a2e�2 + 8b2e�2 − 60ac2e�2 + 2a2ee�
√
a−b cos[�′]�2 + b2ee�

√
a−b cos[�′]�2 − 48acdf�2

+ 36ae�
√
a− b cos[�′]− 150c2e�

√
a− b cos[�′]− 120cdf�

√
a− b cos[�′] + 4a2e�3

×
√
a− b cos[�′] + 2b2e�3

√
a− b cos[�′]− 10ac2e�3

√
a− b cos[�′]− 8acdf�3

×
√
a− b cos[�′]− b cos[�′](−8cdf�2(6 + �

√
a− b cos[�′]) + e(36− 66c2�2

+ 4e�
√
a−b cos[�′](−9 + a�2) + 36�

√
a− b cos[�′]− 11c2�3

√
a− b cos[�′]

+ 8a�2(4 + �
√
a− b cos[�′]))) + e(b2�2(8 + e�

√
a−b cos[�′] + 2�

√
a− b cos[�′])

+ 2c2(15e�
√
a−b cos[�′] − 15(1 + �

√
a− b cos[�′])− a�2(6 + �

√
a− b cos[�′])))

× cos[2�′] + 6bc2e�2 cos[3�′] + bc2e�3
√
a− b cos[�′] cos[3�′])c0

+ 16(−15 + 15e�
√
a−b cos[�′] − 6a�2 − 15�

√
a− b cos[�′]− a�3

√
a− b cos[�′] + b�2

× cos[�′](6 + �
√
a− b cos[�′]))(2ce + df + ce cos[2�′])c20 − 16e cos[�′](−15

+15e�
√
a−b cos[�′] − 6a�2 − 15�

√
a− b cos[�′]− a�3

√
a− b cos[�′] + b�2 cos[�′](6 + �

×
√
a− b cos[�′]))c30)dzh1h2h

′
1h

′
2)

Tuzi

=
1

�2(a− b cos[�′])7=2
(e−�

√
a−b cos[�′]�(−b2ce�2 cos[�′]4(3 + �

√
a− b cos[�′])c0
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+2b cos[�′]3(bc2e�2(3 + �
√
a− b cos[�′])− bde(2 + e�

√
a−b cos[�′])�2dz + c(−ec0(−3

+3e�
√
a−b cos[�′] + 6d2�2 − 3�

√
a− b cos[�′] + d2�3

√
a− b cos[�′]− a�2(3 + �

×
√
a− b cos[�′])− 6d�2dz − d�3

√
a− b cos[�′]dz) + bf�2(d(8 + e�

√
a−b cos[�′]

+ 2�
√
a− b cos[�′])− (3 + �

√
a− b cos[�′])dz))) + c0(−a2�2(3 + �

√
a− b cos[�′])

× (ce − 2fdz)− 30d(−1 + e�
√
a−b cos[�′] − �

√
a− b cos[�′])(ce(d− 3dz)− 2dfdz)

+ 2a(−2f(3e�
√
a−b cos[�′] − 3(1 + �

√
a− b cos[�′]) + d2�2(6 + �

√
a− b cos[�′]))dz)

+ ce(3e�
√
a−b cos[�′] − 3(1 + �

√
a− b cos[�′]) + d2�2(6 + �

√
a− b cos[�′])− 3d�2(6

+ �
√
a− b cos[�′]dz)) + ce sin[�′]2(a2�2(3 + �

√
a− b cos[�′]) + 30d(−1

+ e�
√
a−b cos[�′] − �

√
a− b cos[�′])(d− dz)− 2a(3e�

√
a−b cos[�′])− 3(1 + �

√
a− b cos[�′]

+d2�2(6 + �
√
a− b cos[�′])− d�2(6 + �

√
a− b cos[�′]dz))) + 2 cos[�′](−30c2d2e

+30c2d2ee�
√
a−b cos[�′] − 30cd3f + 30cd3e�

√
a−b cos[�′]f − 30c2d2e�

√
a− b cos[�′]

− 30cd3f�
√
a− b cos[�′] + 3bcec0 − 3bcee�

√
a−b cos[�′]c0 − 6bcd2e�2c0 + 3bce�

×
√
a− b cos[�′]c0 − bcd2e�3

√
a− b cos[�′]c0 + 30c2dedz − 30c2dee�

√
a−b cos[�′]dz

+30cd2fdz − 30cd2e�
√
a−b cos[�′]fdz + 30c2de�

√
a− b cos[�′]dz + 30cd2f�

×
√
a− b cos[�′]dz − 6bfc0dz + 6be�

√
a−b cos[�′]fc0dz + 18bcde�2c0dz + 12bd2f�2c0dz

− 6bf�
√
a− b cos[�′]c0dz + 3bcdde�3

√
a− b cos[�′]c0dz + 2bd2f�3

√
a− b cos[�′]

× c0dz + 30dec20dz − 30dee�
√
a−b cos[�′]c20dz + 30de�

√
a− b cos[�′]c20dz + bce sin[�

′]2c0(−3

+3e�
√
a−b cos[�′] + 6d2�2 − 3�

√
a− b cos[�′] + d2�3

√
a− b cos[�′]− a�2(3 + �

×
√
a− b cos[�′])− 6d�2dz − d�3

√
a− b cos[�′]dz) + a2�2(c2e(3 + �

√
a− b cos[�′])

−de(2 + e�
√
a−b cos[�′])dz + cf(d(8 + e�

√
a−b cos[�′] + 2�

√
a− b cos[�′])− (3 + �

×
√
a− b cos[�′])dz)) + a(2(−bf�2(3 + �

√
a− b cos[�′])c0 + de(3e�

√
a−b cos[�′] − 3(1

+ �
√
a− b cos[�′]) + �2(6 + �

√
a− b cos[�′])c20))dz − 2c2e(3e�

√
a−b cos[�′] − 3(1

+ �
√
a− b cos[�′]) + d2�2(6 + �

√
a− b cos[�′]− d�2(6 + �

√
a− b cos[�′])dz)

+ c(−18df(−1 + e�
√
a−b cos[�′] − �

√
a− b cos[�′])− 2d3f�2(6 + �

√
a− b cos[�′])

+ be�2(3 + �
√
a− b cos[�′])c0 + 6f(−1 + e�

√
a−b cos[�′] − �

√
a− b cos[�′])dz

+2d2f�2(6 + �
√
a− b cos[�′])dz))) + cos[�′]2(b2ce�2(3 + �

√
a− b cos[�′]) sin[�′]2c0

− b2�2(3 + �
√
a− b cos[�′])c0(ce − 2fdz)− cec0(a2�2(3 + �

√
a− b cos[�′]) + 30d(−1
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+ e�
√
a−b cos[�′] − �

√
a− b cos[�′])(d− dz)− 2a(3e�

√
a−b cos[�′] − 3(1 + �

√
a− b cos[�′])

+d2�2(6 + �
√
a− b cos[�′])− d�2(6 + �

√
a− b cos[�′])dz)) + 4b(de(3 + 2a�2

+ e�
√
a−b cos[�′](−3 + a�2) + 3�

√
a− b cos[�′]− 6�2c20 − �3

√
a− b cos[�′]c20)dz + c

2

× e(−3 + 3e�
√
a−b cos[�′] + 6d2�2 − 3�

√
a− b cos[�′] + d2�3

√
a− b cos[�′]− a�2(3 + �

×
√
a− b cos[�′])− 6d�2dz − d�3

√
a− b cos[�′]dz) + cf(d3�2(6 + �

√
a− b cos[�′])

−d(9 + e�
√
a−b cos[�′](−9 + a�2) + 9�

√
a− b cos[�′] + 2a�2(4 + �

√
a− b cos[�′]))

−d2�2(6 + �
√
a− b cos[�′])dz + (3− 3e�

√
a−b cos[�′] + 3�

√
a− b cos[�′] + a�2(3

+ �
√
a− b cos[�′]))dz))))h1h2h′1h

′
2)

where

a = −2L2 cos[�] cos[�′] cosh[�] cosh[�′] + L2(cos[�]2 + sinh[�]2)

+L2(cos[�′]2 + sinh[�′]2)

b = 2L2 sin[�] sin[�′] sinh[�] sinh[�′]

c = L sin[�] sinh[�]

c0 = L sin[�′] sinh[�′]

d = L cos[�] cosh[�]− L cos[�′] cosh[�′]

dz = L cos[�] cosh[�]

e =

√
2 cosh[�] sin[�]√

− cos[2�] + cosh[2�]

f =

√
2 cos[�] sinh[�]√

− cos[2�] + cosh[2�]

h1 = L sin[�] sinh[�]

h2 = L
√
sin[�]2 + sinh[�]2

h′1 = L sin[�
′] sinh[�′]

h′2 = L
√
sin[�′]2 + sinh[�′]2

ACKNOWLEDGEMENTS

The author wishes to thank the National Science Foundation, Michael Shatz, and Steve Colburn for
their support.

Copyright ? 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2004; 44:147–174



174 L. F. SHATZ

REFERENCES

1. Freeman DM, Weiss TF. On the role of �uid inertia and viscosity in stereociliary tuft motion: Analysis of
isolated bodies of regular geometry. In Lecture Notes in Biomathematics-Peripheral Auditory Mechanisms,
Allen JB et al. (eds), vol. 64. Springer: New York, 1986; 147–154.

2. Hyman WA. Shear �ow over a protrusion from a plane wall. Journal of Biomechanics 1972; 5:45–48
(Corrigendum on page 643).

3. Price TC. Slow linear shear �ow past a hemispheroidal bump in a plane wall. Quarterly Journal of Mechanics
and Applied Mathematics 1985; 38:93–104.

4. Shatz L. Indirect boundary element method for shear �ow over prolate and oblate hemispheroidal protuberances
on plane walls. International Journal for Numerical Methods in Fluids 1998; 28:961–981.

5. Chwang AT, Wu TY. Hydromechanics of low-Reynolds-number �ow. Part 2. Singularity method for Stokes
�ows. Journal of Fluid Mechanics 1975; 67:787–815.

6. Pozrikidis C. A study of linearized oscillatory �ow past particles by the boundary integral method. Journal of
Fluid Mechanics 1989; 202:17–41.

7. Lewis ER, Leverenz EL, Bialek WS. The Vertebrate Inner Ear. CRC Press: Boca Raton, FL, 1985.
8. Freeman DM, Weiss TF. Hydrodynamic analysis of a two-dimensional model for micromechanical resonance
of free-standing hair bundles. Hearing Research 1990; 48:37–68.

9. Shatz L. The e�ect of hair bundle shape on hair bundle hydrodynamics of sensory cells in the inner ear. Thesis:
Electrical and Computer Engineering. Massachusetts Institute of Technology: Cambridge, MA, 1996.

10. Shatz L. The e�ect of hair bundle shape on hair bundle hydrodynamics of inner ear hair cells at low and high
frequencies. Hearing Research 2000; 141:39–50.

11. Shatz L. The e�ect of shape on the hydrodynamics of a hemispheroid projecting from a plate in irrotational
�uid. Physics of Fluids 1998; 10:2177–2187.

12. Freeman DM, Weiss TF. Superposition of hydrodynamic forces on a hair bundle. Hearing Research 1990;
48:1–16.

13. Freeman DM, Weiss TF. Hydrodynamic forces on hair bundles at low frequencies. Hearing Research 1990;
48:17–30.

14. Freeman DM, Weiss TF. Hydrodynamic forces on hair bundles at high frequencies. Hearing Research 1990;
48:31–36.

15. Landau LD, Lifshitz EM. Fluid Mechanics. Pergamon Press: Elmsford, NY, 1959.
16. Lamb H. Hydrodynamics (6th edn). Dover Publications: New York, 1945; 138–142.
17. Moon P, Spencer DE. Field Theory Handbook (2nd edn). Springer: Berlin, 1971; 28–33.
18. Pozrikidis C. Shear �ow over a protuberance on a plane wall. Journal of Engineering Mathematics 1997;

31:29–42.
19. Shatz L. Singularity method for oblate and prolate spheroids in Stokes and linearized oscillatory �ow, in

preparation.
20. Chwang AT, Wu TY. A note of potential �ow involving prolate spheroids. Schi�stechnik 1974; 21:19–30.
21. Batchelor GK. An Introduction to Fluid Dynamics. Cambridge University Press: Cambridge, 1967; 380,452.
22. Dean WR. Note on the slow motion of �uid. Proceedings of the Cambridge Philosophical Society 1936;

32:598–613.
23. Wolfram S. Mathematica. Wolfram Research: Champaign, 2002.
24. Aranyosi AJ. Measuring Sound-Induced Motions of the Alligator Lizard Cochlea. Massachusetts Institute of

Technology: Cambridge, MA, 2002.
25. Mulroy MJ, Williams RS. Auditory stereocilia in the alligator lizard. Hearing Research 1987; 25:11–21.
26. Slater L. Generalized Hypergeometric Functions. Cambridge University Press: London, 1996.
27. Gradshteyn I, Ryzhik I. In Table of Integrals, Series, and Products, Je�rey A (ed). Academic Press: New

York, 1994.

Copyright ? 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2004; 44:147–174


